Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Arch Razi Inst ; 76(5): 1191-1202, 2021 11.
Article in English | MEDLINE | ID: covidwho-1560131

ABSTRACT

Coronaviruses (2019-nCoV) are large single-stranded RNA viruses that usually cause respiratory infections with a crude lethality ratio of 3.8% and high levels of transmissibility. There is yet no applicable clinical evaluation to assess the efficacy of various therapeutic agents that have been suggested as investigational drugs against the viruses despite their respective supposed hypothetical claims due to their antiviral potentials. Moreover, the development of a safe and effective vaccine has been suggested as an intervention to control the 2019-nCoV pandemic. However, a major concern in the development of a 2019-nCoV vaccine is the possibility of stimulating a corresponding immune response without enhancing the induction of the disease and associated side effects. The present investigation was carried out by predicting the antigenicity of the primary sequences of 2019-nCoV structural proteins and identification of B-cell and T-cell epitopes through the Bepipred and PEPVAC servers, respectively. The peptides of the vaccine construct include the selected epitopes based on the VaxiJen score with a threshold of 1.0 and ß-defensinas an adjuvant. The putative binding of the vaccine constructs to intracellular toll-like receptors (TLRs) was assessed through molecular docking analysis and molecular dynamics simulations. The selected epitopes for the final vaccine construct are DPNFKD, SPLSLN, and LELQDHNE as B-cell epitopes and EPKLGSLVV, NFKDQVILL, and SSRSSSRSR as T-cell epitopes. The molecular docking analysis showed the vaccine construct could have favorable interactions with TLRs as indicated by the negative values of the computed binding energies. The constructed immunogen based on the immune informatics study could be employed in the strategy to develop potential vaccine candidates against 2019-nCoV.


Subject(s)
COVID-19 , Viral Vaccines , Animals , COVID-19/prevention & control , COVID-19/veterinary , COVID-19 Vaccines , Epitopes, B-Lymphocyte/chemistry , Molecular Docking Simulation , T-Lymphocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL